Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electronic Structure of Epitaxial Sn-Doped Anatase Grown on SrTiO3(001) by Dip Coating

Identifieur interne : 000D73 ( Main/Repository ); précédent : 000D72; suivant : 000D74

Electronic Structure of Epitaxial Sn-Doped Anatase Grown on SrTiO3(001) by Dip Coating

Auteurs : RBID : Pascal:13-0362555

Descripteurs français

English descriptors

Abstract

Sn doping in the anatase polymorph of TiO2 promotes transformation to the thermodynamically stable rutile phase at much lower temperature than found for the undoped material. Here it is shown that the anatase-to-ratile phase transition in Sn-doped TiO2 is inhibited in epitaxial (001) oriented films grown on SrTiO3(001) by a dip coating procedure. X-ray photoemission spectroscopy demonstrates that there is pronounced segregation of Sn to the anatase (001) surface and that the bandgap increases with Sn doping level. This behavior is in contrast to that found in the rutile phase of Sn-doped TiO2, where the bandgap initially decreases for low levels of Sn doping. Pure SnO2 cannot be stabilized by epitaxy in the anatase phase even though good matching between anatase SnO2(001) and SrTiO3(001) is predicted by density functional theory calculations.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0362555

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electronic Structure of Epitaxial Sn-Doped Anatase Grown on SrTiO
<sub>3</sub>
(001) by Dip Coating</title>
<author>
<name sortKey="Oropeza, F E" uniqKey="Oropeza F">F. E. Oropeza</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road</s1>
<s2>Oxford OX1 3QR</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3QR</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, K H L" uniqKey="Zhang K">K. H. L. Zhang</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road</s1>
<s2>Oxford OX1 3QR</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3QR</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Palgrave, R G" uniqKey="Palgrave R">R. G. Palgrave</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road</s1>
<s2>Oxford OX1 3QR</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3QR</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Regoutz, A" uniqKey="Regoutz A">A. Regoutz</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road</s1>
<s2>Oxford OX1 3QR</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3QR</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Egdell, R G" uniqKey="Egdell R">R. G. Egdell</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road</s1>
<s2>Oxford OX1 3QR</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3QR</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Allen, J P" uniqKey="Allen J">J. P. Allen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Chemistry and CRANN, Trinity College Dublin</s1>
<s2>Dublin 2</s2>
<s3>IRL</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Dublin 2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Galea, N M" uniqKey="Galea N">N. M. Galea</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Chemistry and CRANN, Trinity College Dublin</s1>
<s2>Dublin 2</s2>
<s3>IRL</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Dublin 2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Watson, G W" uniqKey="Watson G">G. W. Watson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Chemistry and CRANN, Trinity College Dublin</s1>
<s2>Dublin 2</s2>
<s3>IRL</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Dublin 2</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0362555</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0362555 INIST</idno>
<idno type="RBID">Pascal:13-0362555</idno>
<idno type="wicri:Area/Main/Corpus">000448</idno>
<idno type="wicri:Area/Main/Repository">000D73</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anatase</term>
<term>Crystal structure</term>
<term>Density functional method</term>
<term>Dip coating</term>
<term>Doping</term>
<term>Electronic structure</term>
<term>Energy gap</term>
<term>Epitaxial layers</term>
<term>Epitaxy</term>
<term>Indium additions</term>
<term>Phase transitions</term>
<term>Polymorphism</term>
<term>Segregation</term>
<term>Sol-gel process</term>
<term>Theoretical study</term>
<term>Thin films</term>
<term>Tin additions</term>
<term>X-ray photoelectron spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Structure électronique</term>
<term>Epitaxie</term>
<term>Couche épitaxique</term>
<term>Addition étain</term>
<term>Anatase</term>
<term>Dépôt immersion</term>
<term>Procédé sol gel</term>
<term>Addition indium</term>
<term>Polymorphisme</term>
<term>Structure cristalline</term>
<term>Transition phase</term>
<term>Couche mince</term>
<term>Spectre photoélectron RX</term>
<term>Ségrégation</term>
<term>Bande interdite</term>
<term>Dopage</term>
<term>Méthode fonctionnelle densité</term>
<term>Etude théorique</term>
<term>Substrat SrTiO3</term>
<term>SnO2</term>
<term>SrTiO3</term>
<term>7320</term>
<term>7320A</term>
<term>8115L</term>
<term>7350</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sn doping in the anatase polymorph of TiO
<sub>2</sub>
promotes transformation to the thermodynamically stable rutile phase at much lower temperature than found for the undoped material. Here it is shown that the anatase-to-ratile phase transition in Sn-doped TiO
<sub>2</sub>
is inhibited in epitaxial (001) oriented films grown on SrTiO
<sub>3</sub>
(001) by a dip coating procedure. X-ray photoemission spectroscopy demonstrates that there is pronounced segregation of Sn to the anatase (001) surface and that the bandgap increases with Sn doping level. This behavior is in contrast to that found in the rutile phase of Sn-doped TiO
<sub>2</sub>
, where the bandgap initially decreases for low levels of Sn doping. Pure SnO
<sub>2</sub>
cannot be stabilized by epitaxy in the anatase phase even though good matching between anatase SnO
<sub>2</sub>
(001) and SrTiO
<sub>3</sub>
(001) is predicted by density functional theory calculations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>29</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electronic Structure of Epitaxial Sn-Doped Anatase Grown on SrTiO
<sub>3</sub>
(001) by Dip Coating</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OROPEZA (F. E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHANG (K. H. L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PALGRAVE (R. G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>REGOUTZ (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>EGDELL (R. G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ALLEN (J. P.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GALEA (N. M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>WATSON (G. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road</s1>
<s2>Oxford OX1 3QR</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Chemistry and CRANN, Trinity College Dublin</s1>
<s2>Dublin 2</s2>
<s3>IRL</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>15221-15228</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000506559770380</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>66 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0362555</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Sn doping in the anatase polymorph of TiO
<sub>2</sub>
promotes transformation to the thermodynamically stable rutile phase at much lower temperature than found for the undoped material. Here it is shown that the anatase-to-ratile phase transition in Sn-doped TiO
<sub>2</sub>
is inhibited in epitaxial (001) oriented films grown on SrTiO
<sub>3</sub>
(001) by a dip coating procedure. X-ray photoemission spectroscopy demonstrates that there is pronounced segregation of Sn to the anatase (001) surface and that the bandgap increases with Sn doping level. This behavior is in contrast to that found in the rutile phase of Sn-doped TiO
<sub>2</sub>
, where the bandgap initially decreases for low levels of Sn doping. Pure SnO
<sub>2</sub>
cannot be stabilized by epitaxy in the anatase phase even though good matching between anatase SnO
<sub>2</sub>
(001) and SrTiO
<sub>3</sub>
(001) is predicted by density functional theory calculations.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C50</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Anatase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Anatase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Anatasa</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dépôt immersion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Dip coating</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Procédé sol gel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Sol-gel process</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Polymorphisme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Polymorphism</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transition phase</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Phase transitions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transición fase</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Spectre photoélectron RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>X-ray photoelectron spectra</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Ségrégation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Segregation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Doping</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Doping</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat SrTiO3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>SrTiO3</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>7320A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8115L</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7350</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>343</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0362555
   |texte=   Electronic Structure of Epitaxial Sn-Doped Anatase Grown on SrTiO3(001) by Dip Coating
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024